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Flow rate of some pharmaceutical diluents through
die-orifices relevant to mini-tableting
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Abstract

The effects of cylindrical orifice length and diameter on the flow rate of three commonly used pharmaceutical direct compression
diluents (lactose, dibasic calcium phosphate dihydrate and pregelatinised starch) were investigated, besides the powder particle
characteristics (particle size, aspect ratio, roundness and convexity) and the packing properties (true, bulk and tapped density).
Flow rate was determined for three different sieve fractions through a series of miniature tableting dies of different orifice diameter
(0.4, 0.3 and 0.2 cm) and thickness (1.5, 1.0 and 0.5 cm). It was found that flow rate decreased with the increase of the orifice length
for the small diameter (0.2 cm) but for the large diameter (0.4 cm) was increased with the orifice length (die thickness). Flow rate
changes with the orifice length are attributed to the flow regime (transitional arch formation) and possible alterations in the position
of the free flowing zone caused by pressure gradients arising from the flow of self-entrained air, both above the entrance in the die
orifice and across it. Modelling by the conventional Jones–Pilpel non-linear equation and by two machine learning algorithms
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lazy learning, LL, and feed-forward back-propagation, FBP) was applied and predictive performance of the fitted mo
ompared. It was found that both FBP and LL algorithms have significantly higher predictive performance than the Jon
on-linear equation, because they account both dimensions of the cylindrical die opening (diameter and length). The
elevance determination for FBP revealed that orifice length is the third most influential variable after the orifice diam
article size, followed by the bulk density, the difference between bulk and tapped densities and the particle convexit
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. Introduction

Flowability is crucial for the success of mini-
ableting and the required flow properties of the
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employed pharmaceutical powdered materials
been outlined (Flemming and Mielck, 1995). In gen-
eral, flow properties are determined by a combina
of (i) material properties (particle size, size distri
tion, shape, packing density and surface proper
and (ii) operating conditions (moisture, temperat
static charge and history of applied stresses). Str
may arise from gravity and constrains imposed by
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containers during delivery into the die of tableting
machine.

Until now the quantitative assessment of flow for
pharmaceutical powdered materials in the context of
tableting (with flow meters), as well as the prediction
of critical flowability (with models and equations), is
based on circular orifices. These orifices are consid-
ered as two-dimensional although recent studies have
shown significant effects of die geometry and pres-
ence of air or vacuum in a shoe-die-filling system
resembling tableting (Wu et al., 2003; Sinka et al.,
2004). Furthermore, friction and flow of air during
powder flow down a narrow vertical pipe (0.3 mm) were
found to be dependent on the flow regime of the pow-
der (Bertho et al., 2002). However, in mini-tableting
where the orifice diameter is small, the “empty annu-
lus” or the distance within which no particle centre can
approach to the orifice edge, as well as the effects of
air flow and pressure differences (gradients) caused by
the powder movement (dilation) cannot be neglected.
Especially the pressure gradients: (a) above the edge
of the orifice due to difference between the velocities
in the slow, fast and free-falling zones and (b) along
the die-orifice (pipe), arising from the expansion of
the self-entrained air (less than atmospheric—negative)
(Crewdson et al., 1977; Bertho et al., 2002). All these
may lead to the development of forces that alter the
particle speed and can be related to serious implica-
tions in the filling of the die during mini-tableting.
Furthermore, such effects should be taken into account
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2. Materials and methods

2.1. Materials

Direct compression lactose (DCL 21, DMV Inter-
national, Veghel, The Netherlands), dibasic calcium
phosphate dihydrate, DCPD (Emcompress®, Edward
Mendell, NY, USA) and pregelatinised starch 1500
(Colorcon Ltd., Orpington, UK) were used after clas-
sification by passing through a nest of sieves (90, 125,
150, 180 and 250�m, Endecotts, England) employing
a vibrating sieve shaker (ILM Veb Labor, Type THYR,
Germany) at high intensity level (No. 5/6) for 10 min.
For starch 1500 fraction larger than 250�m was not
obtained, while for lactose the <90�m fraction did
not flow through the orifices used in this study and
the fractions 90–125 and 125–150�m had to be mixed
in order to obtain sufficient quantity for experimenta-
tion. Therefore, three representative size fractions were
selected (Table 1), which were different for each dilu-
ent and are designated as Large (L), Medium (M) and
Small (S).

2.2. Particle characteristics and packing
properties of powders

Particle characteristics (size, aspect ratio, roundness
and convexity) and packing properties (true, bulk and
tapped density) of the powders were measured by pre-
viously described in detail methods (Kachrimanis et
a
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In the present study, we set out to explore and e

ate the effects of orifice dimensions (orifice length
iameter of the die) and of some powder particle c
cteristics (particle size, aspect ratio, roundness
onvexity) and derived packing properties (true, b
nd tapped density) on the flow rate of some dilu
mployed in tableting by direct compression. Th
ieve fractions of three common pharmaceutical d
nts are employed. The experimental data are mod
ith the help of Jones–Pilpel (JP) non-linear eq

ion (Jones and Pilpel, 1966) as well as with differen
achine learning algorithms, and their predictive

ormance is assessed according to a two-way ANO
esign (Rasmussen et al., 1996). Finally, the input vari
ble importance is evaluated.
l., 2003).

.3. Flow measurement

Flow rate through a series of miniature table
ies differing in orifice diameter (0.4, 0.3 and 0.2 c
nd thickness (1.5, 1.0 and 0.5 cm) was measure
mploying a specially constructed flow meter, wh
as earthed, in order to avoid electrostatic chargin
onsisted of an electronic balance with a precisio
0.1 g (A&D Ltd., Japan) connected to a PC thro
n RS232 serial communication for monitoring of po
er flow, and a glass cylindrical hopper, as descr

n detail elsewhere (Kachrimanis et al., 2003). Pow-
er was transferred in the hopper up to a certain h
5 cm), to imitate the conditions of a tableting mach
ata were logged every 0.2 s with the help of Wi
ill serial communication software (Windmill, UK
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Table 1
Particle characteristics and packing properties of the fractionated diluents

Diluent Sieve fraction
(size,�m)

Density (kg/m3) Particle diameter
CED (�m)

Aspect
ratio

Roundness Convexity

True (ρt) Bulk
(ρb)

Tap− bulk
(ρt − ρb)

Lactose (DCL 21) L (>250) 1540 638 76 367.5 1.34 1.22 1.07
M (180–150) 1540 631 88 262.6 1.41 1.26 1.07
S (150–90) 1540 633 92 146.3 1.43 1.28 1.08

DCPD (Emcompress®) L (>250) 2390 813 127 240.6 1.33 1.41 1.13
M (180–150) 2390 791 129 202.7 1.54 1.73 1.16
S (125–90) 2390 801 119 136.6 1.40 1.47 1.14

Starch (STARCH 1500) L (180–150) 1500 678 60 184.6 1.61 1.50 1.12
M (125–90) 1500 658 88 151.1 1.34 1.23 1.08
S (<90) 1500 650 97 117.4 1.34 1.27 1.08

and transferred to MS Excel. Powder flow rate (g/s) was
estimated from the slope of flowing mass versus time
plots (Fig. 1) by linear regression including all data,
and expressed as mean linear velocity of the falling
particles (cm/s), at the orifice inlet, calculated by divid-
ing the cross sectional area normalised flow rate with
the bulk density of the powder. All experiments were
conducted in a room of controlled relative humidity
(50%) employing a dehumidifier (Pretema AG, Zurich,
Swiss) and flow rate determinations were repeated in
triplicate.

In order to elucidate the mechanism of powder flow,
a sequence of microphotographs of the flowing pow-
der was taken at different vertical distance from the

die outlet, using a Nikon Coolpix 4500 digital camera
(4.0 MPixel resolution, frame rate 35 s−1) mounted on
a horizontally located Olympus SZX stereoscope.

2.4. Data modelling

2.4.1. Data sets
The experimental data of flow rate comprised a

full factorial design, replicated three times. The fac-
tors were: diluent (represented by its true density,
at three levels), sieve fraction (as measured circle
equivalent diameter, CED, at three levels), orifice
diameter and thickness of the die (each at three
levels).

F ll sieve ). Orifice
d .5 cm (
ig. 1. (a–c) Typical flowing mass vs. time plots for the sma
iameter/length: 0.4 cm/1.5 cm (1), 0.4 cm/0.5 cm (2), 0.2 cm/1
fraction of the diluents: lactose (a), DCPD (b) and starch (c
3) and 0.2 cm/0.5 cm (4).
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Nine variables were selected as inputs to the FBP
and LL algorithms: (1) bulk density,ρb, (2) difference
between bulk and tapped densities,ρt − ρb, (3) orifice
diameter,Do, (4) particle size, CED, (5) aspect ratio, (6)
roundness, (7) convexity, (8) true density and (9) ori-
fice length or thickness of the die. The corresponding
true density represented the diluent, so that no categor-
ical variable was included as input, and the measured
particle mean diameter (CED) was used instead of the
nominal sieve size fraction, as a more realistic estimate
of particle size. The values of CED were different from
the nominal sieve size especially in the case of lac-
tose (Table 1) and this can be attributed to the greater
deviation from sphericity due to the elongated habit
of lactose crystals. The input and output patterns were
scaled in the interval ]0, 1[ with 10% headroom, where
the sigmoid function operates in the more linear region
(Murtoniemi et al., 1994). The data were split into three
disjoint training sets with increasing number of data
points (60, 100 and 140), and three corresponding test
sets of 25 points.

2.4.2. Models and fitting
The (JP) equation, Eq.(1), and two machine learn-

ing algorithms representative of different computing
approaches were fitted to the data: the lazy learn-
ing (LL) algorithm and a standard feed-forward back-
propagation (FBP) neural network.

The JP equation is applicable to single component
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wherek is a function of particle shape with values
smaller than one (k< 1) that can give the “empty annu-
lus” or the distance (kd/2) within which no particle
center can approach to the orifice edge (Brown and
Richards, 1965).

The lazy learning is a local modelling technique
focusing attention to the sub-region neighbouring of
the point that is being estimated, instead of utilizing the
whole data set. The algorithm postpones all computa-
tions until a prediction is requested and then it proceeds
in interpolation of the relevant examples according to
some measure of distance. The back-propagation neu-
ral network consisted of a single hidden layer of 10
units, a single output unit and no shortcut connections
(Fig. 2). It was trained by the scaled conjugate gra-
dient algorithm, with Bayesian regularisation of the
weights, for 300 cycles. The linear activation func-
tion was selected for the input and output units and the
logistic sigmoid function for the hidden units. Different
initial weights were used with each training-set, so that
the effect of the stochastic component (random initiali-
sation) on the error of prediction was confounded with
the effect of training set distribution.

The JP model was fitted to the measured mass flow
rate data (g/s) by non-linear regression using the JMP-
IN ver. 5.1 (SAS Institute Inc.). For the application of
the machine learning algorithms, the MATLAB soft-
ware was used (Mathworks Inc.), and specifically, the
Lazy Learning package (Birattari et al., 1999) and the
Netlab Toolbox (Nabney, 2001).
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here A and n are coefficients determined expe
entally, that quantify the effects of many variab

material or operator). It is a more general form of
quation proposed byBeverloo et al. (1961):

= Cρbg
1/2(Do − Z)5/2 (2)

hereW is the flow rate,Do the orifice diameter,ρb the
aterial bulk density,g the gravitational acceleratio
hileCandZare two empirical parameters determin
xperimentally. ConstantCdepends on the value ofρb
nd acquires values in the range 0.55–0.65.Z is corre-

ated with particle size,d, according to the relation:

= kd (3)
.4.3. Statistical analysis of results
The performance of the models was assesse

valuating the mean and variance of the generalis
rror expressed as the squared difference of obs
inus predicted values. Sources of variation in the
ralisation error may be: (a) the random componen

he learning algorithms, (b) the size and distributio
he training sets and (c) the distribution of test dat
ierarchical model was applied to isolate the sou
f variation (Rasmussen et al., 1996). The expectatio
f generalisation (prediction) error was given by:

ij = µ + αi + εij (4)

hereyij is the loss on training seti and test casej, µ

he overall mean generalisation error,αi a random vari
ble that explains the effect onµn due to the choice o
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Fig. 2. Topology of the feed-forward back-propagation (FBP) neural network. Nine units in the input layer, 10 units in a single hidden layer and
a single output unit with no shortcut connections.

training set andεij is the error term, which accounts for
all errors unexplained by the model. The mean overall
performance and its standard deviation for each algo-
rithm were estimated. Eq.(4) was used to model the
difference between the losses of the two algorithms,k
andk′.

yijk − yijk′ = �µ + �αi + �εij (5)

Finally, the hypothesis that the estimated overall dif-
ference does not deviate significantly from zero was
tested, by performing a pairedt-test.

2.5. Importance of input variables

Importance of the input variables was determined
for the FBP model by the “automatic relevance determi-
nation”, ARD routine, implemented in the Netlab pack-
age (Neal, 1996). The hyper-parameters of the prior

distribution of the weights associated with each input
variable were calculated in terms of the Bayesian theory
of probability. Variables with lower hyper-parameter
values are considered as the most important because
they correspond to inverse variance estimates.

3. Results and discussion

3.1. Effects on flow

In Fig. 1(a–c) are shown typical plots of flowing
powder mass versus time for the small sieve fraction
of the diluents, and inFig. 3(a–c) plots of mean lin-
ear velocity of the falling particles, at the orifice inlet,
versus ratio of orifice diameter/length of the die.

Figs. 1 and 3show that flow rate, for given frac-
tion and orifice dimensions, increases in the order:
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Fig. 3. (a–c) Mean linear velocity of falling particles vs. the orifice diameter/length ratio for the diluent: lactose (a), DCPD (b) and starch (c).
Orifice diameter: 0.2 cm (full symbols and continuous lines), 0.3 cm (empty symbols and continuous lines) and 0.4 cm (empty symbols and
dashed lines). Particle size fraction: Large (triangles), Medium (circles) and Small (squares).

lactose < DCPD < starch. These differences should be
attributed to the alterations in the interparticle mechan-
ical (frictional) and physical (attractive) forces due to
differences in particle shape and surface roughness as
well as due to the gravitational forces resulting from
the different particle densities.

Furthermore,Fig. 3(a–c) shows a reduction of mean
linear particle velocity as the particle size increases,
for the particle size range and orifice dimensions stud-
ied, although the interparticle attractive force decreases
while the gravitational force exerted on the particles
increases. This is an indication that a process of unsta-
ble (transitional) arch formation and collapse domi-
nates powder flow. This process is also evidenced by the
“stepped” patterns of the mass flow versus time plots,
in Fig. 1, and particularly for plots 1 and 2, which show
that powder flow rate periodically accelerates, proba-
bly as the transitionally formed above the orifice arch
is destroyed. Furthermore, this process is confirmed
by the sequential photographic monitoring of flow pre-

sented inFig. 4, showing the instability in the flow
regime.

Additionally, Fig. 3 shows that there is a general
decrease in the flow rate as the length of the orifice
increases for the small orifice diameter (0.2 cm), a par-
tial decrease for the intermediate diameter (0.3 cm)
and an increase for the large diameter (0.4 cm). This
dependence of flow rate change with orifice length on
the diameter size means significant three-dimensional
effects for the occurring flow regime, intermediate
between stationary free-fall and steady-wave regime
(Wu et al., 2003; Srivastava and Sundaresan, 2003).
Therefore, the pressure gradients above and bellow the
free falling zone may alter the conditions controlling
the formation and collapse of the transitional arch or
the position of the free falling zone relatively to the
upper edge of the die-orifice (Crewdson et al., 1977;
Bertho et al., 2002).

For the small diameter (0.2 cm), the reduction of
particle velocity due to increase of orifice length (cor-
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Fig. 4. Photographs of the flowing powder at the orifice outlet (a) and 2 cm bellow (b), taken at 0.028 s intervals.

responding to decreased diameter/length ratio) reflects
the limitations in particle mobility and separation and
predominance of interparticle frictional and attractive
forces. Therefore, increase of negative pressure gra-
dient across the orifice with the die-thickness (Bertho
et al., 2002), presumably results in reduction of pow-
der dilation across the die-orifice and increased wall
friction. This should cause increase of interparticle
frictional and attractive forces both below and above
the free falling zone and in decrease of particle veloc-
ity. On the contrary, for the large orifice (0.4 cm) the

negative pressure gradient along the die-orifice should
not be significant probably because the flow regime in
this case should be more likely as stationary free-fall
than steady-wave. Therefore, predominance of pres-
sure gradient above the free falling zone may be com-
bined with lowering of free-falling zone and transi-
tional arch towards the entrance of the cylindrical hole
and probably downwards to the orifice outlet. The pos-
sibility of this lowering of the level at which transi-
tion of solid flow from granular to suspended occurs,
increases with the orifice length and this should result in
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Table 2
Overall and marginal predictive performance

Model Overall M.S.E.p (kg s−1, ×106) Marginal M.S.E.p (kg s−1, ×106) for training set size

60 points 100 points 140 points

JP 10.70± 2.27 8.64± 12.21 9.75± 15.73 13.72± 20.10
LL 3.99± 2.20 8.40± 25.86 1.59± 3.79 1.99± 5.57
FBP 3.49± 2.45 8.37± 25.75 0.62± 1.09 1.49± 3.85

Mean squared error of prediction (M.S.E.p), standard error (S.E.) and standard deviation (S.D.). The values are overall mean± S.E. and marginal
mean± S.D.

increased rearrangement and dilation above the parti-
cle free falling with the die-thickness increase. In other
words, the upper edge of the die-orifice should act as
a baffle increasing the powder dilation and not as par-
ticle brake, like the case of small orifice. This may
result in increased powder dilation and particle veloc-
ity caused by increased predominance of gravitational
over frictional and attractive forces, as the die-thickness
increases.

3.2. Flow modelling

In Table 2 are listed the overall mean and the
marginal predictive performance of the training sets.
In Table 3are listed the probability levels for the sta-
tistical significance of the pair-wise differences in the
overall mean and marginal (referring to each subset
of the data separately) predictive performance of the
models, calculated by the pairedt-test.

From the values ofTable 2 it is seen that both
machine learning algorithms (LL and FBP) achieve
smaller overall M.S.E.p than the JP model. However,
looking at the marginal M.S.E.p we can see that it is
dependent upon the data distribution. For the JP model,
the predictive performance seems to deteriorate, as
more data are available for training, while the FBP and

Table 3
Probability levels for the statistical significance of the pair-wise differences in the overall and marginal predictive performance (M.S.E.)
c

M S.E.p fo

FBP

J 0 .003
L 0.2 8
F –

LL algorithms improve their predictive performance as
the data sets become larger. This can be clearly seen in
the data ofTable 3, where the overall M.S.E.p of the
FBP and LL algorithms is significantly smaller than
that of the JP model (p-level 0.003 and 0.001, for the
JP-LL and JP-FBP comparison, respectively), while the
marginal M.S.E.p for the smallest data set shows no sta-
tistically significant differences between the models.
Finally, no significant difference either in the overall
or in the marginal M.S.E.p was found between the LL
and the FBP neural network.

Bad predictive performance is expected with a small
data set since it might not contain enough information.
However, the deterioration of predictive performance
for the JP model even when more data are available,
suggests its strong dependence on data distribution.
Therefore, FBP and LL algorithms are advantageous
in modelling flow rate, since they are more robust in
changes of the training data distribution.

3.3. Importance of input variables

In Table 4are listed the hyper-parameters express-
ing the importance of the variables under investigation
which were obtained by the automatic relevance deter-
mination (ARD) method as a function of training set
alculated by the pairedt-test of the models

odel Overall M.S.E.p Marginal M.

LL FBP 60

LL

P 0.003 0.001 0.481
L – 0.454 –
BP 0.546 – 0.791
p

r data points

100 140

LL FBP LL FBP

.477 0.010 0.004 0.004 0
09 – 0.670 – 0.49

0.330 – 0.502 –
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Table 4
Hyper-parameters for the importance of input variables estimated by
the automatic relevance determination (ARD) method as a function
of training set size

Variable 60 points 100 points 140 points

X1: bulk density (ρb) 94.3 (5) 76.0 (7) 19.4 (5)
X2: tapped− bulk (ρt − ρb) 156.8 (6) 19.9 (4) 6.7 (4)
X3: orifice diameter 2.0 (1) 2.7 (1) 1.9 (1)
X4: particle diameter 4.1 (2) 6.6 (2) 2.5 (2)
X5: aspect ratio 318.8 (8) 81.2 (8) 171.3 (9)
X6: roundness 254.7 (7) 53.9 (5) 75.8 (7)
X7: convexity 31.6 (4) 106.4 (9) 34.9 (6)
X8: true density (ρt) 492.5 (9) 54.4 (6) 107.2 (8)
X9: orifice length 16.9 (3) 9.8 (3) 6.5 (3)

Numbers in parentheses indicate the rank order of variable impor-
tance.

size. They show that, in general, the variables with
lower ARD values (more important) are the orifice
diameter, the particle size and the length of the cylindri-
cal orifice. Also, they show that importance of the bulk
density (ρb), the difference of bulk and tapped densities
(ρt − ρb), and the particle convexity greatly depends on
the training set size or data distribution. The first two
variables (ρb andρt − ρb) are not important when the
FBP model is “trained” (fitted) on the small (60 points)
and medium (100 points) data sets but their importance
increases for the larger (140 points) data set. Particle
convexity has moderate importance for the smallest and
largest data sets but it is not important for the medium
data set. From all the aforementioned, it becomes clear
that both dimensions of the die-opening (orifice diam-
eter and length) affect significantly the flow rate, and
this is the reason for the better performance of the
FBP and LL algorithms compared to the JP equation,
which was not developed to account for any effect of
the third dimension of the hole. Possible implication of
this finding may be improvement of mini-tablet weight
uniformity by applying optimisation based on orifice
diameter, particle size and die-depth.

4. Conclusions

The flow rate generally decreases as the thickness of
the mini-tableting die increases for the smaller orifice
d ori-
fi me-
t nd

FBP) account the effects of the die-thickness and diam-
eter and have better predictive performance than the
conventional non-linear (JP) model. Most influential
variables, in descending order of significance, deter-
mined for the FBP model, were the orifice diameter,
the particle size, and the orifice length (die-thickness),
followed by the bulk density, the difference between
bulk and tapped densities and the particle convexity.
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